名前:Altmann、Christian(准教授)
所属:京都大学 医学研究科 医学教育推進センター
E-Mail:christian.altmann.6z (emailアドレスには@kyoto-u.ac.jp をつけてください)
電話番号:075-753-9295
居室:京都大学医学研究科、E棟113屋
専門分野:認知神経科学、実験心理学
研究関連キーワード:聴覚、視覚,脳波、MEG、fMRI
原著論文:
[1] Ono, K., Altmann, C.F., Matsuhashi, M., Mima, T., & Fukuyama, H. (2015). Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians. Hearing Research, 319, 25-31.
[2] Altmann, C.F., Uesaki, M., Ono, K., Matsuhashi, M., Mima, T., & Fukuyama, H. (2014). Categorical speech perception during active discrimination of consonants and vowels. Neuropsychologia, 64, 13-23.
[3] Altmann, C.F., Terada, S., Kashino, M., Goto, K., Mima, T., Fukuyama, H. & Furukawa, S. (2014). Independent or integrated processing of interaural time and level differences in human auditory cortex? Hearing Research, 312, 121-127.
[4] Altmann, C.F., & Gaese, B.H. (2014). Representation of frequency-modulated sounds in the human brain. Hearing Research, 307, 74-85.
[5] Altmann, C.F., Hiraumi, H., Terada, S., Adachi, T., Votinov, M., Ono, K., Mima, T., & Fukuyama, H. (2013). Preattentive processing of horizontal motion, radial motion and intensity changes of sounds. Neuroreport, 24, 861-865.
[6] Altmann, C.F., Ono, K., Callan, A., Matsuhashi, M., Mima, T., & Fukuyama, H. (2013). Environmental reverberation affects processing of sound intensity in right temporal cortex. European Journal of Neuroscience, 38, 3210-3220.
[7] Ono, K., Matsuhashi, M., Mima, T., Fukuyama, H., & Altmann, C.F. (2013). Effects of regularity on the processing of sound omission in a tone sequence in musicians and non-musicians. European Journal of Neuroscience, 2786-2792.
[8] Altmann, C.F., Getzmann, S., & Lewald, J. (2012). Allocentric or craniocentric representation of acoustic space: an electrotomography study using mismatch negativity. PLoS One, 7, e41872.
[9] Altmann, C.F., Matsuhashi, M., Votinov, M., Goto, K., Mima, T., & Fukuyama, H. (2012). Visual distance cues modulate neuromagnetic auditory N1 responses. Clinical Neurophysiology, 123, 2273-2280.
[10] Altmann, C.F., Klein, C., Heinemann, L.V., Wibral, M., Gaese, B.H., & Kaiser, J. (2011). Repetition of complex frequency-modulated sweeps enhances neuromagnetic responses in the human auditory cortex. Hearing Research, 282, 216-224.
[11] Heinemann, L.V., Kaiser, J., & Altmann, C.F. (2011). Auditory repetition enhancement at short interstimulus intervals for frequency-modulated tones. Brain Research, 1411, 65-75.
[12] Heinemann, L.V., Rahm, B., Kaiser, J., Gaese, B.H., & Altmann, C.F. (2010). Repetition enhancement for frequency-modulated but not unmodulated sounds. PLoS One, 5, e15548.
[13] Altmann, C.F., Gomes de Oliveira Jr., C., Heinemann, L., & Kaiser, J. (2010). Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex. Neuropsychologia, 48, 2824-2832.
[14] Doehrmann, O., Weigelt, S., Altmann, C.F., Kaiser, J., & Naumer, M.J. (2010). Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices. Journal of Neuroscience, 30, 3370-3379.
[15] Altmann, C.F., Wilczek, E., & Kaiser, J. (2009). Processing of auditory location changes after horizontal head rotation. Journal of Neuroscience, 29, 13074-13078.
[16] Doehrmann, O., Naumer, M.J., Volz, S., Kaiser, J., & Altmann, C.F. (2008). Probing category selectivity for environmental sounds in the human auditory brain. Neuropsychologia, 46, 2776-2786.
[17] Altmann, C. F., Henning, M., Döring, M.K., & Kaiser, J. (2008). Effects of feature-selective attention on auditory pattern and location processing. NeuroImage, 41, 69-79.
[18] Kaiser, J., Heidegger, T., Wibral, M., Altmann, C.F., & Lutzenberger, W. (2008). Distinct gamma-band components reflect the short-term memory maintenance of different sound lateralization angles. Cerebral Cortex, 18, 2286-2295.
[19] Altmann, C.F., Nakata, H., Noguchi, Y., Inui, K., Hoshiyama, M., Kaneoke, Y., & Kakigi, R. (2008). Temporal dynamics of adaptation to natural sounds in the human auditory cortex. Cerebral Cortex, 18, 1350-1360.
[20] Altmann, C.F., Bledowski, C., Wibral, M., & Kaiser, J. (2007). Processing of location and pattern changes of natural sounds in the human auditory cortex. NeuroImage, 35, 1192-1200.
[21] Altmann, C.F., Doehrmann, O., & Kaiser, J. (2007). Selectivity for animal vocalizations in the human auditory cortex. Cerebral Cortex, 17, 2601-2608.
[22] Kaiser, J., Altmann, C.F., Bledowski, C., & Naumer, M.J. (2007). Praktische Übungen zur Psychophysiologie im Kurs Medizinische Psychologie. GMS Zeitschrift für Medizinische Ausbildung, 24, Doc108.
[23] Kaiser, J., Heidegger, T., Wibral, M., Altmann, C.F., & Lutzenberger, W. (2007). Alpha synchronization during auditory spatial short-term memory. Neuroreport, 18, 1129-1132.
[24] Altmann, C.F., Grodd, W., Kourtzi, Z., Bülthoff, H.H., & Karnath, H.O. (2005). Similar cortical correlates underlie visual object identification and orientation judgment. Neuropsychologia, 43, 2101-2108.
[25] Yaguez, L., Coen, S., Gregory, L.J., Amaro, E., Altmann, C., Brammer, M. J., Bullmore, E. T., Williams, S. C., & Aziz, Q. (2005). Brain response to visceral aversive conditioning: a functional magnetic resonance imaging study. Gastroenterology, 128, 1819-1829.
[26] Altmann, C.F., Deubelius, A., & Kourtzi, Z. (2004). Shape saliency modulates contextual processing in the human Lateral Occipital Complex. Journal of Cognitive Neuroscience, 16, 794-804.
[27] Gregory L.J., Yaguez, L., William, S.C.R., Altmann, C., Coen, S.J., Ng, V.W.K., Brammer, M.J., Thompson, D.G., & Aziz, Q. (2003). Cognitive Modulation of the Cerebral Processing of Human Oesophageal Sensation using Functional Magnetic Resonance Imaging. Gut, 52, 1671-1677.
[28] Altmann, C.F., Bülthoff, H.H., & Kourtzi, Z. (2003). Perceptual organization of local elements into global shapes in the human visual cortex. Current Biology, 13, 342-349.
[29] Kourtzi, Z., Tolias, A.S., Altmann, C.F., Augath, M.A., & Logothetis, N.K. (2003). Integration of Local Features into Global Shapes: Monkey and Human fMRI Studies. Neuron, 37, 333-346.