Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society, 2016

Selection Examination for the Training Program [for the 4-year Doctor's Course]

Mathematics

1 (THIS QUESTION MUST BE ANSWERED)

Answer the following questions.

(i) Find three numbers A, B, C satisfying

$$\frac{1}{x(x+1)(x+2)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2} \quad \text{for all } x \in \mathbb{R}.$$

(ii) Compute

$$\int_1^\infty \frac{1}{x(x+1)(x+2)} \, dx.$$

(iii) Compute

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}.$$

2 (THIS QUESTION MUST BE ANSWERED)

Answer the following questions.

(i) Find a 2-by-2 matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 satisfying
 $A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $A \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \end{pmatrix}$

(ii) For $x \in \mathbb{R}$, let B(x) be the 3-by-3 matrix

$$B(x) = \begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix}.$$

•

Compute $\det B(x)$.

(iii) Let B(x) be as in (ii). Sketch the graph of the function $f(x) = \operatorname{rank} B(x)$.

3

(Selection problem)

Let A be the 3-by-2 matrix, and b and c be the 3-dimensional vectors given by

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad c = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}.$$

Let x and y denote 2-dimensional vectors. Answer the following questions.

- (i) Solve the simultaneous linear equations Ax = b if there exists a solution. Do the same for Ay = c.
- (ii) Solve the simultaneous linear equations $A^T A x = A^T b$, where A^T is the transpose of the matrix A.
- (iii) Let x_0 be the solution to $A^T A x = A^T b$ that you found in (ii). Prove that

$$||A(x_0 + y) - b|| \ge ||Ax_0 - b||, \quad \forall y \in \mathbb{R}^2,$$

where $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^3 .

(Selection problem) 4

Consider the following simultaneous ordinary differential equations:

$$\int \frac{du_1}{dt}(t) = -au_1(t) + bu_2(t), \quad \forall t > 0,$$
(1a)

$$\begin{cases} \frac{du_2}{dt}(t) = au_1(t) - bu_2(t), \quad \forall t > 0, \qquad (1b) \\ u_1(0) = c \in \mathbb{R}, \qquad (1c) \\ u_2(0) = d \in \mathbb{R} \end{cases}$$
(1d)

$$u_1(0) = c \in \mathbb{R},\tag{1c}$$

$$u_2(0) = d \in \mathbb{R},\tag{1d}$$

where a and b are positive constants. Answer the following questions.

- (i) Find a conserved quantity for equations (1a)-(1d).
- (ii) Find the solution $u_1(t)$.
- (iii) Let c = 0. Then, for a positive constant M, find a condition on d that is necessary and sufficient for $u_1(t)$ to satisfy $u_1(t) \leq M$ for all $t \geq 0$.

5

(Selection problem)

For the function $f(x, y) = \log(x^2 + y^2)$, answer the following questions.

(i) Find the equation of the tangent plane to the surface z = f(x, y) at the point

$$(x_0, y_0, z_0) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right).$$

(ii) Compute

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

(iii) Let $D(a) = \{(x, y) \mid x^2 + y^2 \le a^2\}$ be the disc of radius a > 0 centered at the origin and let g(a) be the function

$$g(a) = \iint_{D(a)} f(x, y) \, dx dy.$$

Find the minimum of g(a) (a > 0).

6

(Selection problem)

Let A(1,1,0), B(0,2,1), C(1,0,1), and D(2,1,1) be four points given in the xyzspace. Answer the following questions.

Remark. The phrase "line AB" means the straight line through the points A and B extended infinitely, *not* the line segment with endpoints A and B. A similar remark applies to "the plane through A, B, and C."

- (i) Find the minimum distance from the point C to the line AB.
- (ii) Find the minimum distance from the point D to the points on the plane through A, B, and C.
- (iii) Find the minimum distance from the points on the line AB to the points on the line CD.