Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society, 2016

Selection Examination for the Training Program Mathematics

1 (THIS QUESTION MUST BE ANSWERED)

Let $f(x) = \sin(x)$. For an arbitrary non-negative integer N, let f_N and R_N be defined by

$$f_N(x) = \sum_{n=0}^N \frac{f^{(n)}(0)}{n!} x^n, \quad R_N(x) = f(x) - f_N(x), \quad \forall x \in \mathbb{R},$$

where $f^{(n)}$ is the *n*-th order derivative of f. Note that for each $x \in [0,1]$ there exists $c \in (0,x)$ such that $R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}$ by Taylor's theorem. Answer the following questions.

- (i) Calculate $\int_0^1 \frac{f_6(x)}{x} dx$. (ii) Find an upper bound of $\left| \int_0^1 \frac{R_6(x)}{x} dx \right|$.
- (iii) The sinc function is defined by $\operatorname{sinc}(x) = \frac{\sin(x)}{x}$. Find an approximation for $\int_0^1 \operatorname{sinc}(x) dx$ and then estimate the absolute error between the exact value and your approximation.

2 (THIS QUESTION MUST BE ANSWERED)

Let A be a 3-by-3 matrix defined by

$$A = \begin{pmatrix} 0 & -2 & -1 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

Answer the following questions.

- (i) Find all eigenvalues of A.
- (ii) Find a 3-by-3 matrix P and a diagonal matrix D such that $D = P^{-1}AP$.

(iii) Let
$$e^A$$
 be defined by $e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}$. Calculate each elements of e^A .

3

(Selection problem)

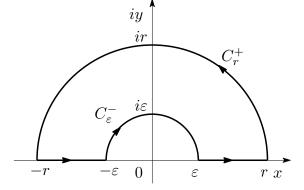
Euler's formula states that, for an arbitrary real number θ ,

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

holds, where e is the base of the natural logarithm, i is the imaginary unit.

For arbitrary positive numbers r and ε satisfying $\varepsilon < r$, let C_r^+ and C_{ε}^- be semicircles oriented as indicated in the figure on the right.

Answer the following questions.



(i) Calculate
$$\lim_{r \to \infty} \int_{C_r^+} \frac{e^{iz}}{iz} dz$$
 and $\lim_{\varepsilon \to 0} \int_{C_\varepsilon^-} \frac{e^{iz}}{iz} dz$.
(ii) Prove $\int_{\varepsilon}^r \frac{\sin(x)}{x} dx = \frac{1}{2} \left(\int_{-r}^{-\varepsilon} \frac{e^{ix}}{ix} dx + \int_{\varepsilon}^r \frac{e^{ix}}{ix} dx \right)$.
(iii) Calculate $\int_0^\infty \frac{\sin(x)}{x} dx$.

(Selection problem)

4

Let λ be a positive constant. We consider the following ordinary differential equation:

$$x\frac{d^2u}{dx^2}(x) + 2\frac{du}{dx}(x) + \lambda^2 x u(x) = 0, \quad \forall x \in \mathbb{R}.$$
 (1)

Answer the following questions.

- (i) Suppose that u(x) is a solution of (1) and consider a new dependent variable y(x) = xu(x). Derive an ordinary differential equation for y.
- (ii) Find the general solution u of (1).
- (iii) Find a particular solution u of (1) such that u is bounded on \mathbb{R} and u(0) = 1.

 $\mathbf{5}$

(Selection problem)

For an arbitrary positive constant ε , let r_{ε} be a rectangular function defined by

$$r_{\varepsilon}(x) = \begin{cases} 0 & \text{if } |x| > \varepsilon, \\ \frac{1}{4\varepsilon} & \text{if } |x| = \varepsilon, \\ \frac{1}{2\varepsilon} & \text{if } |x| < \varepsilon. \end{cases}$$

For an arbitrary function f absolutely integrable on \mathbb{R} , let $\mathcal{F}[f]$ be a complex valued function defined by

$$\mathcal{F}[f](\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} \, dx, \quad \forall \xi \in \mathbb{R},$$

where i is the imaginary unit.

Answer the following questions.

- (i) Compute $\mathcal{F}[r_{\varepsilon}](\xi)$ and express the result without using the imaginary unit.
- (ii) For an arbitrary sequence $\{a_n\}_{n=-\infty}^{\infty}$ of real numbers, let s_{ε} be a step function defined by

$$s_{\varepsilon}(x) = \sum_{n=-\infty}^{\infty} a_n r_{\varepsilon}(x - 2n\varepsilon).$$

Calculate $\mathcal{F}[s_{\varepsilon}]$.

(iii) For an arbitrary continuous function f on \mathbb{R} , calculate $\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} r_{\varepsilon}(x) f(x) dx$.

(Selection problem)

Let h be a positive constant. For an arbitrary integer n, let $sinc_n$ be defined by

$$\operatorname{sinc}_n(x) = \operatorname{sinc}\left(\frac{\pi}{h}(x-nh)\right), \quad \forall x \in \mathbb{R},$$

where

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin x}{x} & (x \neq 0), \\ \lim_{x \to 0} \frac{\sin x}{x} & (x = 0). \end{cases}$$

Answer the following questions.

- (i) For an arbitrary integer m, calculate $\operatorname{sinc}_n(mh)$.
- (ii) Let f_h be a linear combination of sinc_n , i.e.,

$$f_h(x) = \sum_{n=-\infty}^{\infty} a_n \operatorname{sinc}_n(x), \quad \forall x \in \mathbb{R}$$

where $\{a_n\}_{n=-\infty}^{\infty}$ is a sequence of real numbers. For an arbitrary continuous function f on \mathbb{R} , find the coefficients $\{a_n\}_{n=-\infty}^{\infty}$ satisfying

$$f_h(mh) = f(mh), \quad \forall m \in \mathbb{Z}.$$

(iii) For a non-negative integer N, let f_h^N be a truncation of f_h defined by

$$f_h^N(x) = \sum_{n=-N}^N a_n \operatorname{sinc}_n(x), \quad \forall x \in \mathbb{R}.$$

Find an approximation of $\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$ by using f_h^N with h = 2, N = 2, and a suitable f. Here, the following fact may be used:

$$\int_{-\infty}^{\infty} \operatorname{sinc}_0(x) \, dx = h.$$